
FYKOS Serial XXXIV.V Waves

Serial: Waves

Waves are phenomena represented by a number of oscillators distributed in space, exhibiting
collective oscillations with predictable dynamics. The physics of waves has a lot in common
with the physics of oscillations, and represents the continuation of our ideas about discrete
oscillators into continuum systems. For oscillators, we had to derive the dynamical equations
of motion. For waves, we will have to derive the so called wave equation. The derivation of this
equation will be demonstrated here on a simple example of a string, which will lead us to the
definition of some elementary notions necessary to step from discrete systems to continuum.

Taut String
Consider a horizontally taut string. We choose a coordinate system such that the string coincides
with the x axis in the equilibrium position and one end of the string is located at the origin
of the coordinate system. Therefore, x coordinate corresponds to coordinate along the string.
Let the tension in the string be T in the equilibrium position. The tension always acts in the
tangent direction. Let the length mass density of the string be λ, so that for a string of length L
the overall mass of the string is m = λL.

We will assume that the string can only vibrate in the vertical direction. The displacement
of the string from the equilibrium position is labeled as u(x, t), since the displacement can differ
in both position x and in time t.

We should note that this is very strong assumption. However, we can rationalize it with
a simple conception – we assume only very small oscillations, so the tangent direction is always
almost parallel with the horizontal axis. That means that the tension in the x direction is
almost equal to T along the whole string. Because it acts on each part of the string from both
directions with the same magnitude, the parts have no reason to move along the x axis.

Our task is as follows – for a certain displacement profile u(x, t), determine the forces acting
on the elements of the string, and hence determine the acceleration of the string elements. We
are interested in the force in the direction of the displacement. We will demonstrate how to
calculate its change along the x axis.

Let’s stop the time for a while and assume u = u(x). An element of the string located in the
distance x acts on the surrounding elements with the force T in the tangent direction to the
function u. Marking the slope of the tangent from the horizontal direction as φ, u′ = tanφ ≈ φ
will apply1 because, as it was already mentioned, the string is almost horizontal and the angle φ
is very small.2 Here u′ stands for the derivative of the function u along a spacial coordinate. The
vertical component of this force is Ty = T sinφ ≈ Tφ. For an element with the length dx and
the center of gravity in the point x, its right margin will be at point x + dx/2. At this point,

1We only need to realize that both of the functions tan φ and u′ correspond to the slope of the tangent
of the function u(x) at a given point (for a small element dx and corresponding change du, du = tan φ dx
applies).

2Really, plot the functions y = tan x and y = x and you will find out that the difference for small x
is negligible. That is the principle of a linear approximation at a given point (replacing the function with
a straight line which has the same slope of the tangent as the function).
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the tension of Ty(x+ dx/2) acts on it. The similar applies for the left margin. We can calculate
the change in the magnitude of the force as the difference between the right and left margin

dF = Ty

(
x+ dx

2

)
− Ty

(
x− dx

2

)
= T

(
φ
(
x+ dx

2

)
− φ
(
x− dx

2

))
.

We don’t know the function φ(x) yet but we can approximate it3 for a very small a with
its tangent

φ(x+ a) ≈ φ(x) + φ′(x) a+ . . . .

We substitute a with ± dx/2, so it will be infinitely small. Substituting we get

dF ≈ T
((
φ(x) + φ′(x) dx

2

)
−
(
φ(x) − φ′(x) dx

2

))
= Tφ′(x) dx .

We have the result4

dF
dx = Tφ′ ≈ Tu′′ = T

∂2u

∂x2 .

Let’s emphasize again that we worked only with the function u = u(x) with the time stopped. If
we are interested in the progress of the system in time, we have to go back to the original func-
tion u = u(x, t) and to partial derivatives. We can calculate the acceleration from the Newton’s
second law. An element with the length dx has mass dm = λdx, and for the force dF = dmü
applies, where the dot marks the derivative in respect to time. The resulting wave equation is

∂2u

∂t2
= T

λ

∂2u

∂x2 .

In this case, the constant T
λ

will be denoted as v2. Using dimensional analysis, we can
determine that the dimensions of v are that of speed. Constant v indeed corresponds to the so
called phase speed of the waves.

The wave equation plays the same role as the equation for the acceleration of the displace-
ment in discrete oscillating systems. We can also find a variant of the natural frequency, but
first let’s try to find some possible solutions of the wave equation.

Plane Waves
Since waves are built up from individual oscillators, we can try to see whether simple harmonic
oscillations can be a solution of the wave equation. Assume that the solution of the wave
equation has the following form

û(x, t) = U(x) e−iωt ,

3We are using the linear approximation again. For a general approximation we would use the Taylor series,
which you can look up if you are interested. Here we use only the first two terms, as the other are negligible
for a small dx.

4Working with the function u(x, t) we replace the derivative, e.g. du
dx with the partial derivative, e.g. ∂u

∂x ,
which is common for multivariable functions. The difference is basically the fact that with the general derivative
we would need to consider the dependence of the parameters of the function u (x and t) on each other, while
with the partial derivative we do not.
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Fig. 1: String is divided into elements of length dx. The forces acting on the element in the
middle are shown, including the decomposition into the vertical and horizontal direction.

where U(x) is the profile of the amplitude of the oscillations, which can vary with the position.
Again, the displacement is a real variable, but introducing the complex û(x, t) leads to a simpli-
fication of the algebra. The real solution is recovered as u(x, t) = Re û(x, t). Substitution into
the wave equation leads to

U(x) d2e−iωt

dt2 = v2e−iωt d2U

dx2 ,

U(x)
(
−ω2) e−iωt = v2e−iωt d2U

dx2 ,

d2U

dx2 = −ω2

v2 U(x) .

We are familiar with this equation, only the variable in the previous case was time instead of
position – this is an equation of simple harmonic oscillations. Therefore, the solution has the
form

U(x) = Aeikx ,

where A is a (potentially complex) constant, and k is a real number. Usually, we refer to k as
the wavenumber. Substituting this form into the previous equation leads to

−k2Aeikx = −ω2

v2 U(x) ⇒ ω2 = k2v2 .

This equation is called the dispersion relation – it determines the dependence of the frequency
of the waves on the wavenumber. Finally, the complex solution of the wave equation is therefore

û(x, t) = Aei(kx−ωt) .

The real solution is u(x, t) = |A| cos (kx− ωt+ φ), where

A = |A| eiφ
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determines both the amplitude |A| and phase shift φ.
Same as was the case for the oscillations, the wave equation is a linear equation, and therefore

the solutions of the equation can be constructed by linear superpositions of known solutions.
For example, combination

û′(x, t) = Aei(kx−ωt) +Bei(−kx−ωt)

is also a solution of the wave equation.
The behaviour of these so called plane waves can be described as translation of the pro-

file U(x) with passing time t. In order to see this interpretation clearly, consider rewriting the
solution as

û(x, t) = Aei(kx−ωt) = Aeik(x− ω
k

t) = Aeik(x−vt) ,

where we used the dispersion relation (and assumed that both ω and k are positive). We can
see that the wave therefore moves to the right (in the direction of increasing x). On the other
hand, if the solution is in the form

û(x, t) = Aei(−kx−ωt) = Ae−ik(x+vt) ,

the waves move to the left (in the direction of decreasing x).

Fourier substitution
In the same way as for oscillations, we can transform the differential wave equation into an
algebraic equation. For the solution in the form of the right-moving plane waves, we can write

∂

∂t
→ −iω , ∂

∂x
→ ik ,

∂2

∂t2
→ −ω2 ,

∂2

∂x2 → −k2 .

The application of this substitution leads to a direct derivation of the dispersion relation from
the wave equation.

Boundary conditions
Since the waves don’t fill out the entire space, the specific solution is constrained by this space
in form of the so called boundary conditions. For our example of the string taut between two
points, the string does not move at these points. On the other hand, if we had a rope fixed to
a pivot on one end and free to move on the other hand, than the restoring force on the free end
would be zero. This corresponds to condition

∂u

∂x
= 0

at the given point. These points represent the interfaces from which the waves can reflect. For
a general interface, we would also observe the transmission of waves through the interface, but
in these examples the waves cannot exist beyond this interface, and therefore only the reflection
occurs. This can be represented by assuming that the solution is a superposition of two plane
waves moving in the opposite direction, possibly with different amplitude and phase shift. The
example of such solution follows.
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Standing waves
Consider a string taut between two points, where it is kept stationary. The displacement u of
the string from the equilibrium position follows the wave equation

∂2u

∂t2
= T

λ

∂2u

∂x2 .

The distance between the points is L. Our task is to determine the stable dynamics of the string,
i.e. determine u(x, t), which leads to a repetition of the same cycle. The boundary conditions
can be written after definition of the system of coordinates. Let’s define this system so that one
of the points where the string is kept stationary is the origin of the coordinate system, and the
other point lies at the distance L along the x axis. Then, the boundary conditions are

u(0, t) = 0 = u(L, t) .

Now, assume that the solution can be found in the form of superposition of the two plane waves –
one moving to the right and the other moving to the left. Then, the complex displacement is
given as

û(x, t) = Aei(kx−ωt) +Bei(−kx−ωt) .

The dispersion relation can be derived from the wave equation

ω2 = v2k2 ,

where v =
√

T
λ

. The unknowns are therefore A, B and k, since ω is given as ω = vk (assuming
that k is positive – negative k is included in the wave moving in the opposite direction). First
boundary condition leads to

0 = û(0, t) = Ae−iωt +Be−iωt ⇒ A = −B ,

the other leads to

0 = û(L, t) = −Bei(kL−ωt) +Be−i(kL+ωt) ,

0 = B
(
e−ikL − eikL

)
.

Using eix = cosx+ i sin x, we can write

0 = B (cos(kL) − i sin(kL) − cos(kL) − i sin(kL)) ,
0 = −2iB sin(kL) .

Hence, we can have either a trivial solution with B = 0, or we must have

kL = nπ ,

where n is a (positive) integer, which ensures that sin(kL) = 0. The constants that are left
undetermined are therefore only the absolute value and phase of B, which corresponds to the
amplitude and global phase of the solution. The displacement of the string is therefore given as

û(x, t) = Be−i
√

T
λ

nπ
L

t (e−i nπ
L

x − ei nπ
L

x
)

= Be−i
√

T
λ

nπ
L

t (−2i) sin
(
nπ
L
x
)
.
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Using B = |B| eiφ and −i = e−i π2 leads to

û(x, t) = 2 |B| ei(φ− π
2 )e−i

√
T
λ

nπ
L

t sin
(
nπ
L
x
)
.

The real displacement is therefore

u(x, t) = Re û(x, t) = 2 |B| cos

(√
T

λ

nπ
L
t− φ+ π2

)
sin
(
nπ
L
x
)

=

= −2 |B| sin

(√
T

λ

nπ
L
t− φ

)
sin
(
nπ
L
x
)
.

If we wanted to specify |B| and φ (and perhaps even n), we would need to know the displacement
along the whole string at a certain point in time. For example, we could be given that at time t =
= 0

u(x, 0) = C sin
(
π
L
x
)
,

where C is a known real constant. Therefore, we have

C sin
(
π
L
x
)

= −2 |B| sin(−φ) sin
(
nπ
L
x
)
.

This means that n = 1, φ = π
2 a |B| = C

2 . The general evolution of the displacement is therefore

u(x, t) = −2C2 sin

(√
T

λ

π
L
t− π2

)
sin
(
π
L
x
)

= C cos

(√
T

λ

π
L
t

)
sin
(
π
L
x
)
.

This equation does not feature any unknowns, and therefore the dynamics of the string is
completely determined. Notice that we required the superposition of two waves in order to
describe the dynamics correctly – one wave moving to the right and one to the left. This is the
case typical for standing waves, and it represents the reflection at the system boundaries, as
mentioned before.

Damping
Damping, i.e. the loss of energy of the waves, can be included in the wave equation through
terms including the first order derivatives. These derivatives can be either with respect to time t
or position x. Here we present the case where the derivative is with respect to time, but the
case for position is similar.

Consider the equation
∂2u

∂t2
+ γ

∂u

∂t
= v2 ∂

2u

∂x2 ,

where γ is the strength of the damping. For the complex displacement, we can carry out the
Fourier substitution

−ω2û− iγωû = −k2v2û

which means that the dispersion relation is

ω2 + iγω = k2v2 .
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This presents us with a non-trivial problem – we need to solve a complex quadratic equation.
Mistakes in this derivation can be avoided using the method of completion of the square

ω2 + iγω − γ2

4 + γ2

4 =
(
ω + iγ2

)2
+ γ2

4 = k2v2 ,(
ω + iγ2

)2
= k2v2 − γ2

4 .

Now, we have two possibilities. Either the damping is relatively weak, and we have k2v2 > γ2

4 .
Then

ω + iγ2 = ±

√
k2v2 − γ2

4 ⇒ ω = −iγ2 ±

√
k2v2 − γ2

4 .

For strong damping, which is characterized by inequality k2v2 − γ2

4 < 0, the solution can be
written as

ω = −iγ2 ± i

√
γ2

4 − k2v2 .

In the first case, the frequency becomes a complex number, and in the second the frequency is
completely imaginary for given real k. How should we interpret this value? Let’s substitute the
value for weak damping into the oscillation part of the plane wave

e−iωt = e
−i
(

−i γ
2 ±
√

k2v2− γ2
4

)
t

= e− γ
2 te∓i

√
k2v2− γ2

4 .

Hence, we can see that the real part of the frequency still corresponds to oscillations, but the
imaginary part represents the exponential decay of the amplitude with progressing time. The
decay constant in this case is γ

2 , i.e. the stronger the damping, the faster the amplitude of the
oscillations decays to zero at the given point.

Similar method could be used for the solution of equation with first derivative in position.
This would lead again to the complex quadratic equation, but this time for the wavenumber,
which would become complex. There is one more remark left to be made – for a strong damping,
the frequency/wavenumber is purely imaginary. This means that the system does not exhibit
any oscillations, but only exponential decay in time or position, respectively.

Linearisation
Waves are almost omnipresent in continual physical systems. The reason behind this is very
similar to the ubiquity of harmonic oscillations in discrete systems. Close to an equilibrium
state, we can often approximate the dynamics of the system as waves.

This process of so called linearisation is carried out as follows. First, we select the variables
where we expect the waves to occur. Then, we approximate these variables as small displace-
ments from equilibrium values. For example, for a general variable u(x, t) we could write the
approximation as u(x, t) ≈ u0 +u1(x, t), where u0 is the equilibrium value and u1(x, t) is a small
displacement from this value in all points and at all times. The specific definition of what it
means for the displacement to be small depends on the system in question. For the horizontally
taut string, small would mean that the displacement is always much smaller than the length of
the string. This approximation is then substituted into our dynamical equation, and we retain
only the terms up to the first order in u1. The resulting equation will be linear and often it will
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have the form of the wave equation in u1. The process we just described is rather abstract, and
we will try to explain it more in terms of an example inspired by the waves in Bose-Einstein
condensate.

Bose-Einstein condensate is a curious state of matter, which can only be attained by en-
sembles of bosons (specific type of particles) at very low temperatures. We will not explore the
specific nature of this state. We will only recognize that we can assign a wavefunction ψ(x, t)
to this system, which obeys the so called Gross-Pitaevskii equation

−α∂
2ψ

∂x2 + β |ψ|2 ψ = iℏ∂ψ
∂t

,

where α and β are positive real constants, ℏ is a real constant (so called reduced Planck constant)
and ψ is generally complex. We will not attempt to derive a truly quantum solution, and we
will apply several rather drastic approximations. Assume that there is a stationary solution ψ0,
which is only a function of x and which is real. Then

α
∂2ψ0

∂x2 = β |ψ0|2 ψ0 .

Now, lets approximate the wavefunction as
ψ(x, t) = ψ0(x) + ψ1(x, t) ,

where ψ1(x, t) ≪ ψ0. Then

−α∂
2ψ0

∂x2 − α
∂2ψ1

∂x2 + β (ψ0 + ψ1) (ψ0 + ψ∗
1) (ψ0 + ψ1) = iℏ∂ψ1

∂t
,

where we used |ψ|2 = ψ∗ψ. To the first order in ψ1, we have

−α∂
2ψ0

∂x2 + β |ψ0|2 ψ0 − α
∂2ψ1

∂x2 + β
(
ψ2

0ψ
∗
1 + 2ψ1ψ

2
0
)

= iℏ∂ψ1

∂t
.

The first two terms cancel out, following from the equation of the stationary solution. For the
remaining terms we carry out the Fourier substitution, which leads to

αk2ψ1 + βψ2
0ψ

∗
1 + 2βψ2

0ψ1 = ℏωψ1 .

The complex conjugate equation is
αk2ψ∗

1 + βψ2
0ψ1 + 2βψ2

0ψ
∗
1 = ℏωψ∗

1 .

The sum of the previous two equations yields the following equation
αk2 (ψ1 + ψ∗

1) + 3βψ2
0 (ψ1 + ψ∗

1) = ℏω (ψ1 + ψ∗
1) .

Dividing by ψ1 + ψ∗
1 = 2 Reψ1 leads to

αk2 + 3βψ2
0 = ℏω .

This equation differs from true dispersion relation for waves in Bose-Einstein condensate, but
approaches the correct relation in the limit αk2 ≫ 3βψ2

0 . In this limit, the dispersion relation
is quadratic

ω = α

ℏ
k2 ,

which is significantly different from the dispersion relation for waves on the string, where we
had ω = v |k|. Similar process can be used to obtain dispersion relations for a large number of
systems, where the dynamical equations are known.
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What comes next?
Some of these elementary pieces of knowledge about waves will be tested in the current problem
series. What will be the topic of our study after that? We will explore the generalisation of
normal modes for waves – we will understand the idea of wave polarisation and polarisation
vectors. We will also have a look at some more contemporary examples of waves. But, all that
only in the next episode of the series.
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