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Problem III.P . . . absurd pendulum 9 points; průměr 5,88; řešilo 67 studentů
What phenomena can affect the measurement of gravitational acceleration using a pendulum?
Estimate how many valid digits your result would have to contain to measure them. Consider
also the phenomena that you usually neglect.

Kačka was wondering what she could write in the discussion.

Real changes in gravitational acceleration
The first group of phenomena we will discuss is the real changes in gravitational acceleration,
which are caused by effects observable with a sophisticated instrument. The first difference from
the tabulated value 9.81 m·s−2 are the local deviations based on the location.

Variations by latitude The Earth is not a precise sphere, but rather so-called geoid, which is
an irregular figure; however, we will consider it to be an ellipsoid with an equatorial radius Rr =
= 6 378 km and a polar radius Rp = 6 357 km in the first approximation.1 Therefore, even the
gravitational accelerations will be different from a free-fall acceleration as the distance from us
to the center of the Earth is different depending on the latitude. If we consider all the mass to
be concentrated in the center of the Earth, we can calculate free-fall acceleration in both cases.
The Earth’s mass is ME = 5.973 6 · 1024 kg, so the free-fall acceleration at the pole will be

gpole = G
ME

R2
p

= 6.674 · 10−11 m3·kg−1·s−2 · 5.973 6 · 1024 kg
(6 357 km)2

.= 9.865 m·s−2

and at the equator

geq = G
MZ

R2
p

= 6.674 · 10−11 m3·kg−1·s−2 · 5.973 6 · 1024 kg
(6 378 km)2

.= 9.801 m·s−2 .

Since the gravitational force is the net force of the free fall and the centrifugal force of the
Earth’s rotation, gravitational acceleration will have different values at different latitudes. At
the pole, there is no centrifugal acceleration, while at the equator with an equatorial radius R =
= 6 378 km the centrifugal acceleration is of the magnitude

ac = ω2R = 4π2

(1 day)2 · 6378 km .= 0.03 m·s−2 .

Therefore, the latitude affects the acceleration in the order of hundredths of a m·s−2, so we
have to measure to at least three significant digits to be able to observe this effect.

Changes by altitude We will calculate the changes by the altitude in the same way as we
did for the change by latitude using a model of mass concentrated in the center, for two points
on the equator. One point lies at the sea level with a radius Rr = 6 378 km and the second point
is at the peak of Cayambe, which is almost on the equator and has an altitude 5 790 m. a. s. l.,2
so its radius is RCay = 6 383.79 km. The gravitational acceleration at sea level is from the

1https://is.muni.cz/el/1441/podzim2007/ZS1BP_IVZ1/um/02.Tvar_a_velikost_Zeme.pdf
2https://cs.wikipedia.org/wiki/Cayambe
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previous example and is equal to g0 = 9.80 m·s−2 − 0.03 m·s−2 = 9.77 m·s−2, the gravitational
acceleration at Cayambe is

gCay = G
MZ

R2
Cay

− ω2RCay =

= 6.674 · 10−11 m3·kg−1·s−2 · 5.9736 · 1024 kg
6 383.79 km2 − 4π2

1 day2 · 6 383.79 km .=
.= 9.78 m·s−2 − 0.03 m·s−2 =

= 9.75 m·s−2 ,

so the difference is in the second decimal place, again. For smaller altitude differences (those
of the order of hundreds of meters) the difference will be in the third decimal place.

The subsoil influence In addition to latitude and altitude, the subsoil and the surroundings’
relief also influence the result. According to the geology textbook 3 changes in the gravity field
due to underground alterations, such as a subsurface oil deposit will be of the order 10−6 m·s−2,
so we would have to measure to seven significant digits to see its effect.

The cosmic surroundings We have already neglected all the effects of the Earth and the
location of a reference point on it. Let us look further, namely into the space. The objects here
are very far away, but they are also very massive, and some of them have a significant influence
on the Earth. We will calculate the changes in gravitational acceleration due to these objects as
the difference of the gravitational force onto a point at the center of the Earth in both positions.
We calculate the gravitational acceleration according to the formula

g = G
M

r2 ,

where G = 6.67·10−11 m3·s−2·kg−1 is the gravitational constant, M is the mass of the particular
object, and r is its distance from the Earth. The results for the selected bodies are given in
the table 1.

Tab. 1: Influence of cosmic objects on gravitational acceleration

object M

kg smaller distance larger distance ∆g

m·s−2

Moon 7, 35 · 1022 365 033 km 407 241 km 7 · 10−6

Sun 1, 99 · 1030 147 098 074 km 152 097 701 km 4 · 10−4

Mars 6, 42 · 1023 0,5 AU 2,5 AU 6 · 10−9

Jupiter 1, 90 · 1027 4,2 AU 6,2 AU 2 · 10−7

Pluto 1, 30 · 1023 38 AU 40 AU 3 · 10−13

The values of masses and distances used in this table are from Wikipedia4, where for the Sun
and the Moon we have used the distances in the perihelion and aphelion or perigee and apogee,

3https://is.muni.cz/el/1431/podzim2007/Z0135/um/Uvod_06_Tihove_pole.pdf
4https://cs.wikipedia.org/
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respectively, while for the planets, we use the sum and the difference of the mean semi-axis of
the specific planet and the Earth.

We can now compare the influence of these cosmic objects with the gravitational influence
of small and very close objects. For a human of mass M = 80 kg at a distance r = 1 m is the
gravitational acceleration approximately ∆g = 5 · 10−9 m·s−2 and for a truck with a mass M =
= 40 t at distance r = 50 m is the gravitational acceleration approximately ∆g = 1 ·10−9 m·s−2,
comparable to the effect of a human or Mars.

Tidal forces In the previous paragraph, we calculated the effect of cosmic bodies on the
point at the center of the Earth. However, these forces are already included in the motion of
the Earth in the solar system through trajectory changes. However, what does influence the
measurement on the surface is the tidal force caused by the fact that the gravitational force
from each object is not the same on the surface of the Earth as at its center. Therefore, the
magnitude of the tidal force is proportional to the gradient of the gravitational force. We can
observe the tidal acceleration on the line passing through the centers of the two objects

2GMr

R3 ,

where M is the mass of the particular object, r is the radius of the Earth, R is the distance of
the Earth from the object, and M is the object’s mass. After inserting the values for the Moon,
we get ∆g ≈ 5 · 10−7 m·s−2 and for the Sun ∆g ≈ 1 · 10−6 m·s−2 .5 Although these forces are
small, they are still observable in tides and variations in height according to the moon’s phase.
This effect is an order of magnitude smaller than the effect of given gravitational differences on
the center of the Earth, especially for more distant objects like the Sun (due to the dependence
on its third power). Thus, we can assume that the influence of other objects will also be of
one order of magnitude smaller than their direct influence on the center of the Earth. If the
objects rotate around each other, the effect of centrifugal force, which is approximately half the
magnitude of the previously mentioned force, must also be accounted for.6

The systematic problems of the mathematical pendulum
We have discussed the actual changes in gravitational acceleration, and now, let us look at the
systematic errors of the measurement using a mathematical pendulum. For our example we will
consider that our pendulum is made of an iron sphere of mass m = 1 kg, which is tethered to
a steel rod in such a way that its center of gravity is l = 2 m.

The mathematical pendulum, the parameter accuracy In the mathematical pendulum
model, we have the following formula for its period

T = 2π
√

l

g
.

From the period measurement, we can calculate the acceleration of gravity as

g = 4π2 l

T 2 .

5https://en.wikipedia.org/wiki/Tidal_force#Sun,_Earth,_and_Moon
6https://cs.wikipedia.org/wiki/Slapov%C3%A1_s%C3%ADla
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The question now arises as to what accuracy we would have to measure the rod’s period
and length to achieve the desired precision. Using the propagation of uncertainty formula will
help us determine that the relative error of the rod length and acceleration will be the same.
Thus, if we wanted to measure the deviations of the gravitational acceleration of the order of
10−9 m·s−2, we would need to achieve a relative accuracy of 10−10, meaning that we would have
to measure the suspension with an accuracy of 10−10 m, which is on the order of the size of an
atom. Accuracy of the time measurement is even more important here because according to the
propagation of uncertainty, just this error would cause the relative error in the measurement of
the gravitational acceleration to be twice the relative error of the period measurement. If we were
to achieve a measurement accuracy for g of the order of 10−5 m·s−2 (theoretically possible for
length if we could measure micrometers), we would need to have a relative period measurement
accuracy of 5 · 10−6, which for our pendulum with a period of approximately 2.8 s gives an
uncertainty in the measurement of time approximately 10−5 s. For stopwatch measurements
with a possible measurement accuracy 0.1 s it would mean measuring 104 swings, which would
take about 8 hours with a given period. In such a long time, the pendulum would probably
already have stopped as a result of other effects. To achieve the required measurement accuracy
for 100 swings (5 minutes), we would need to measure to an accuracy of at least 0.001 s.

Mathematical pendulum, changes of length To have the length stabilized to microme-
ters, we need to consider the phenomena that could change it, namely thermal expansion, and
elastic deformation. Changes of the length due to linear thermal expansion is calculated as

∆l = l0α∆T ,

where l0 is the original length, ∆T is the temperature change and α is is the coefficient of linear
expansion. Its magnitude can be found, for example in tables7 and we see that its value is,
e.g., for steel 11 · 10−6 K−1. Thus, we would need to keep the temperature stable to tenths of
a degree, while for polyethylene it is more than ten times larger, so we would need to keep the
temperature stable to a hundredth of a degree.

The other effect is the variable tension force stretching the rope due to the swinging of the
pendulum. If we consider the amplitude of the pendulum 5 ◦, the changes of the tension will be
of the order of

∆F = mg(1 − cos φ) ≈ 4 · 10−2 N

To convert this to a change in length, we use the formula describing elasticity ∆l = k∆F , where
k represents the stiffness, which we calculate as k = l0/(ES), where S is the cross-section of
the fiber and E is the modulus of elasticity. Assume a fibre thickness of d = 0.1 mm a circular
cross-section and a modulus of elasticity in tension of steel8 E = 220 GPa. For the change in
length, we then get

∆l = l0

ES
∆F ≈ 10−3 m·N−1 · 4 · 10−2 N ≈ 4 · 10−5 m .

To achieve an accuracy of 10−6 we would need a maximal angle 0.1 ◦, which would give a
projection of the swing in the horizontal direction approximately 3 mm.

7http://kabinet.fyzika.net/studium/tabulky/tepelna-kapacita-roztaznost.
8http://kabinet.fyzika.net/studium/tabulky/modul-pruznosti.php
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Physical pendulum We will now look at our model of the physical pendulum, i.e., we will
no longer consider our pendulum a point mass on a massless hinge but as a rigid sphere and a
rigid rod (both from steel). The equation for the period of the physical pendulum is

T = 2π
√

I

mgl
, (1)

where l is the distance of the center of gravity from the turning point and I is the moment
of inertia about the axis of rotation. Considering the density of steel ρ = 7 850 kg·m−3, we
calculate the mass of the fiber modeled by the rigid rod mf = 0.12 g and the radius of the
sphere r = 3.12 cm. The difference in the position of the center of gravity due to the fiber will
be about 0.1 mm. We can express the moment of inertia as the sum of the moment of inertia
of the rigid rod Irod = mf(l − r)2/3 and the moment of inertia of the sphere Is = 2msr

2/5,
which must be shifted by the distance of the sphere’s center from the center of gravity l using
Steiner’s theorem. We can now express the gravitational acceleration from the equation (1)
and substitute for all the variables:

g = 4π2 I

mlT 2 =

= 4π2
2
5 mr2 + ml2 + 1

3 mf(l − r)2

(m + mf)
(

l − mfl
2(m+mf)

)
T 2

=

= 4π2 l

T 2

2
5

r2

l2 + 1 + 1
3

mf
m

(
1 − r

l

)2(
1 + mf

m

) (
1 − mf

2(m+mf)

) =

= g0

2
5

r2

l2 + 1 + 1
3

mf
m

(
1 − r

l

)2(
1 + mf

m

) (
1 − mf

2(m+mf)

) ≈

≈ 1.000 076g0

The difference in measured gravitational acceleration when we use the model of the physical
pendulum is on the order of 7 · 10−4 m·s−2. The following question would be, how accurately
the specific quantities involved in the calculation would have to be measured. We would again
follow the propagation of uncertainty formula, but for the complexity of the calculation, we will
not express it in this problem solution.

Influence of the air resistance As we determined in the previous section, the weight has
a non-zero dimension, therefore a drag force acts on it as it moves through the air. In order to
apply the theory of damped harmonic motion, we will consider that the drag force is directly
proportional to the velocity of the body, so the flow is laminar, and we can write

Fd = 6πµrv ,

where r is the radius of the sphere and µ is the dynamic viscosity of the air, which has a value
of about µ = 1.9 · 10−5 kg·m−1·s−1 and is very temperature dependent. The equation of motion
now has the form

Iφ̈ + 6πµrlφ̇ + mgl sin φ = 0 ,
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which after linearization and dividing by the moment of inertia, we modify to

φ̈ + 6πµrl

I
φ̇ + mgl

I
sin φ = 0 ,

that we identify as the equation for the damped oscillation ẍ+2δẋ+ω2
0x = 0 with parameters δ =

= 3πµrl2φ̇/I and ω2
0 = mgl/I. Such a system will have its natural frequency ω modified to

ω =
√

ω2
0 − δ2 ,

from which we can calculate the modified period

T = 2π√(
2π
T0

)2 − δ2
= T0√

1 − δ2T 2
0

4π2

≈ 1.000 001T0 .

The air resistance gives a relative period change of 10−6, hence the relative difference in the
measured gravitational acceleration will be approximately twice as large 2 · 10−5 m·s−2. The
amplitude then decreases as e−δt, the characteristic decay constant (when the amplitude de-
creases to 1/e) is approximately 1.7 · 105 s .= 50 h. The decrease of amplitude will therefore be
more affected by friction in the hinge than air resistance.

Other effects that could play a role here are the thermal expansion of the sphere or the
influence of changes in temperature and pressure on the density and dynamic viscosity of the
air. However, these again will not be explicitly calculated for their difficulty.

Influence of anharmonicity When solving the harmonic oscillator equation, we use approx-
imation sin φ = φ, which holds for small displacements. However, when we want to be more
accurate, we can use the expansion of the sine to a higher order, so sin φ = φ + φ3/6, which
gives us a solution for period9

T = 2π
√

l

g

(
1 + 1

4 sin2 φ

2

)
.

Thus, the relative change in period for the maximum angle 5 ◦ is approximately 5 · 10−4, so the
difference of the gravitational acceleration compared to a simple calculation is of the order of
10−2 m·s−2. If we wanted an even more accurate result, we could use the development of the sine
to an even higher order, but for these, we no longer have the exact analytical solution. However,
due to the air resistance, the maximal angle generally decreases with time. Consequently, neither
the solution in this part is absolutely accurate.

Other effects Another significant effect (see section Influence of air resistance) is the resis-
tance in the hinge, which is difficult to quantify. However, experience tells us that it takes the
pendulum less than 50 h to reduce its amplitude to a third of its original value. Thus, the effect
of resistance is not insignificant. Another effect we would have to control to get exact results
is the airflow in the room. It should ideally be non-existent, but that is technically difficult to
achieve, so we should at least try to keep it stable. However, the stability of the flow can be
disturbed by the movement of the experimenter or other people in the room.

9https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Dourmashkin)
/24%3A_Physical_Pendulums/24.04%3A_Appendix_24A_Higher-Order_Corrections_to_the_Period_for_Larger_
_Amplitudes_of_a_Simple_Pendulum
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Conclusion
In the first part of the solution, we have shown how big of an influence the individual changes
in the gravitational acceleration have on the result. In the second part, we looked at all the
considerations and corrections we would have to include to achieve the accuracy we were looking
for. We see that from our model of 1 kg weight on a 2 m rod, we were unable to measure the
length and time to greater accuracy than 10−6 m·s−2, which is an order of magnitude affected
by the composition of the subsurface with the inclusion of the exact geographic location and
altitude. Measuring the influence of cosmic bodies is completely beyond our capabilities. To
achieve an accuracy of 10−6 m·s−2 we would need to measure the input parameters very
accurately and monitor their changes. Apart from that, we would have to consider the fact
that the physical pendulum is damped by air resistance, and finally, we would have to factor
in the inaccuracy of the linearization of the problem. Measuring quantities very accurately is
very difficult not only from a practical point of view of the need for careful measurement and
accurate equipment, but the limits are set by the complexity of the theory used as well.
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