
FYKOS Solution XXXVI.V.5

Problem V.5 . . . xenon was wandering 8 points; průměr 3,15; řešilo 33 studentů
A once positively ionized xenon atom flew out from the center of a large cylindrical coil with
velocity v = 7 m·s−1 and began to move through a homogeneous magnetic field, which is
in a plane perpendicular to the magnetic lines of force. At a certain point the coil is disconnect
from the source, thus its induction begins to decrease exponentially according to the following
equation B(t) = B0e−Ωt, in which B0 = 1.1 · 10−4 T and Ω = 600 s−1. What is the deviation
from the initial direction after the atom is stabilized?

Vojta spent several hours thinking about a reasonable problem assignment
with a clever solution, but ultimately, it ended horrendously. And he has yet to see the solution.

First, we need to recognize which forces are acting on the atom. Of course, there is the magnetic
force caused by the presence of a magnetic field. But the magnetic field changes with time, so
an electric field must also act on the electron. The Maxwell-Faraday equation for the circular
region of radius r simplifies due to the symmetry of the problem to

dB

dt
πr2 = d(B · S)

dt
= dΦ

dt
=
∮

Eds = E2πr ⇒ E = r

2
dB

dt
.

Even though we have found the magnitude of the electric intensity vector, we still have to figure
out its orientation. We can also express the previous equation in a differential form

∇ × E = −∂B

∂t
.

The curl operator ∇× is the cross product of the operator ∇ (which contains the partial
derivatives by each coordinate) with the vector as argument (which in our case is the electric
field intensity). For example, for the z-axis component of the resulting vector we have ∂Ey

∂x
− ∂Ex

∂y
.

Let us orient the coordinate system so that the z-axis points in the direction of the magnetic
induction and is identical to the axis of symmetry of the cylinder. The axes x and y then lie in
a plane perpendicular to this axis. Let the origin lie at the point from which the atom comes
out, and let the x-axis point to the direction of its velocity. Then the magnetic induction vector
has the form B = B0e−Ωt (0, 0, 1)T. Therefore, the vector produced by the curl operator on the
electric intensity must only have the third component. You can easily check that the electric
intensity vector

E = B0Ω
2 e−Ωt

(−y
x
0

)
satisfies Maxwell’s equation. Direct calculation of the vector shape is not simple, and while the
vector is not even uniquely determined, it meets all the conditions that must be satisfied in
electromagnetism. Of course, its magnitude corresponds to the magnitude determined by the
first equation. We could even derive the vector’s orientation from the first equation using Lenz’s
rule.

The equation of motion for a charged particle in an electromagnetic field is

F = ma = q (E + v × B) .
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In our case, the particle is a positively charged atom with charge q = e = 1.602 · 10−19 C
and mass mXe = mµAXe = 1.67 · 10−27 kg · 137.3 = 2.2 · 10−25 kg. We split the vector equation
of motion into three components according to each axis

ẍ = eB0

mXe
e−Ωt

(
−Ω

2 y + ẏ
)

,

ÿ = eB0

mXe
e−Ωt

(Ω
2 x − ẋ

)
,

z̈ = 0 ,

where we have split the vector product

v × B = B0e−Ωt

(
ẋ
ẏ
ż

)
×

(0
0
1

)
= B0e−Ωt

(
ẏ

−ẋ
0

)
We have obtained the equations of motion for an electron in an electromagnetic field. It

is a system of three second-order linear differential equations. The motion in the z-axis is
rectilinear, and since the electron is supposed to fly out perpendicular to the axis of symmetry,
its velocity vz is zero. Thus the z coordinate of the electron is also zero throughout its motion.

The problem is with the solution of the other two equations, which are interconnected.
In the general solution, we could use some tricks of linear algebra, and we would be able
to separate the equations (i.e., to have only one coordinate and its time derivative in each
equation). Fortunately, we are able to solve this problem without this challenging procedure.
Finally, there is no need for numerical simulation, even though it would be a valid approach
for such demanding analytical formulas. Therefore, we also include simple Python code in our
solution.

However, we will use one trick. Since the equations contain the product of Ω and coordinates,
it is unclear what could be neglected to simplify the equations. Therefore, we will use the
substitution Ωt = T , where T is a dimensionless time. An important condition is that at T = 1
the magnetic intensity field is e-times smaller than at the beginning. The equations will take
the form

Ω2 1
Ω2

d2x

dt2 = eB0

mXe
Ωe−Ωt

(
−1

2y + 1
Ω

dy

dt

)
⇒ d2x

dT 2 = eB0

mXeΩe−T
(

−1
2y + dy

dT

)
,

Ω2 1
Ω2

d2y

dt2 = eB0

mXe
Ωe−Ωt

(1
2x − 1

Ω
dx

dt

)
⇒ d2y

dT 2 = eB0

mXeΩe−T
(1

2x − dx

dT

)
,

Note the dimensionless factor α = B0e/(mXeΩ) .= 0.13, which is quite small. The acceler-
ation in axis x is initially zero because y and dy

dT
can be chosen to be zero (this corresponds

to the fact that you orient the coordinate system such that the electron comes out in the di-
rection of the x-axis). Then the acceleration in the x-axis is proportional to the velocity and
the y-position through the factor α. These are proportional to the velocity through the same
α factor and the position in x. So, at least for the beginning of the motion, we can estimate
that the acceleration in x is suppressed by a factor α2 relative to the velocity and position in
the same axis. Moreover, it is suppressed exponentially with time.
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That brings us to the idea of simplifying both equations. It occurred to us that the acceler-
ation on the x-axis is small, and we can put the velocity dx

dT
= Vx0 as a constant. That makes

the equation for the acceleration in the y-axis much simpler

d2y

dT 2 = eB0

mXeΩe−T
(

Vx0T

2 − Vx0

)
.

Integrating by T using partial integration gives the velocity as

dy

dT
= − eB0

mXeΩ
Vx0

2 e−T (T − 1) + C ,

where C is the integration constant, which can be determined from the condition that at time
T = 0 the velocity is zero.

We get
dy

dT
= −α

Vx0

2 e−T (T − 1) − α
Vx0

2 ,

which indicates that due to the exponential damping of the acceleration, the motion settles down
to a uniform linear motion after a while. We can determine its direction from the direction of
the velocity vector. That is simply

tan β = Vy(T = ∞)
Vx(T = ∞) =

−α Vx0
2

Vx0
= −Be

2mXeΩ
.= −0.067 .

Since the angle β was zero at the beginning, the atom deviates from the original direction
by β = arctan(−Be/(2mXeΩ)) = −3.8 ◦, hence by approximately four degrees in the negative
y-axis direction.

Let’s check the validity of our approximation. We will integrate the position in the y-axis
with respect to T

y = α
Vx0

2 e−T T − α
Vx0T

2 ,

Substituting into the equation for d2x
dT 2 gives

d2x

dT 2 = α2Vx0

4 e−T
(
−3e−T T + T + 2e−T − 2

)
.

By integrating from zero to infinity, we get the change in velocity in axis x as

∆Vx = α2Vx0

4

(
−3

4 + 1 + 1 − 2
)

= −α2Vx0
3
16 .
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The velocity on the x-axis changes by

∆Vx

Vx0
= −3α2

16
.= −0.34 % .

Thus, it is clear that our assumption of constant velocity is valid and the approximation possible.
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