
FYKOS Solution XXXVI.VI.5

Problem VI.5 . . . gadolinium sphere 9 points; průměr 3,00; řešilo 34 studentů
What is the smallest amount of gadolinium 148 needed to put together to cause local melting
from the heat generated by its nuclear decay? Assume that only α decays take place and the
material is at room temperature in the air.

Karel was thinking about elements, but Matěj Rz. changed that.

The task combines multiple phenomena
1. the nuclear decay,
2. the interaction of radiation with matter,
3. the heat transfer.

Theory
The theory concerning nuclear decay and the interaction of radiation with matter needed for
this problem is explained in problem T.5 in the Fyziklani 2021.1 The nucleus of 148Gd is unstable
and decays. Since it is a heavy nucleus, it α decays2

148
64Gd −−→ 4

2He + 144
62Sm .

The decay releases a significant amount of energy (in the literature also known as “Q-value”) –
in our case 3 271 keV per 1 decay.3

In nuclear decay, it should be mentioned that the daughter nucleus4 can also decay. We do
not need to deal with it because the problem assignment says the sphere is made of 148Gd. If
we were to consider the time dependence, the problem would get more complicated. We have
the simpler case – 148Gd decays only by alpha5 decaying and the daughter 144Sm is stable.6 In
case that we would have a cascade of successive decays

A1
Z1X1 −−→ A2

Z2X2 −−→ A3
Z3X3 −−→ An

ZnXn ,

we would get a system of differential equations, called Bateman equation.7 By solving them, we
would get the time dependence of the number of nuclei Ni(t), or rather their activities Ai(t)
and eventually their heat power over time.

The α particles are heavy and charged, so they interact intensely with matter, thus stopping
quickly. Specifically, we are referring to the electromagnetic interaction of the α particle (with
a charge +4 e) with charged parts of the surrounding matter (nuclei, electrons), which leads to
the ionization of the surrounding environment. To give you an idea of how fast the α particle
interacts, consider that its mean free path in the air is bare 20 cm or (according to the well-
known fact8) can be stopped by a sheet of paper. Because of this, we can assume that the newly
formed α particles will stop already in the material (Gd) and transfer all its energy to it. The
sum of the energies of all the decays then leads to a non-negligible thermal power, which heats

1https://fyziklani.cz/download/2021/solutions.pdf
2http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=640148
3http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=640148
4“maternal nucleus” is original (on the left side of the equation), “daughter” is newly formed (on the right

side of the equation)
5http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=640148
6http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=620144
7https://en.wikipedia.org/wiki/Bateman_equation
8https://commons.wikimedia.org/wiki/File:Alfa_beta_gamma_neutron_radiation.svg
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the material.9 The heat power to its volume PV can then be derived directly from the definition
of

PV = QΛNAρ

M
, (1)

where Q is the Q-value, ρ is the density, M is the molar mass, Λ = (ln 2)/T is the decay constant
and NA is Avogadro constant. The product ΛNA has the meaning of the activity of 1 mole of
material, that is, how many nuclei decay in 1 s in 1 mole of material.

The heat transfer is realized by
• conduction,
• convection, radiation.

Conduction is realized by collisions of atoms or oscillations of the crystal lattice10 – that is
the reason why it is typically more pronounced in solids, especially metals. It also exists in
liquids; however, it is usually negligible due to the larger interatomic distances. For a general
description of conduction, we have the heat conduction equation

a ∇2T + PV

ρcp
= dT

dt
, (2)

where a = λ/ρcp is the thermal diffusivity (λ is the thermal conductivity, cp is the specific heat
capacity), T is the temperature, ρ is the density of the material, and t is the time. The equation
describes the heat balance of the system. The input variables are the material’s properties
and geometry, and the solution yields the temperature profile, i.e. its dependence T (x, y, z, t).

Convection is accomplished by moving mass – i.e., atoms actually change their equilibrium
position, often moving along complicated trajectories. That is the reason why we speak about
convection in the context of fluids. According to the action of external forces, we distinguish
forced convection, where the fluid flow is driven by an external force (e.g. work of a pump), or
natural, which works by buoyancy forces generated due to the thermal expansion of the fluid–
a hot fluid has less density, so it rises upwards due to buoyant forces.

In terms of the amount of heat transferred over a one-unit area, forced convection is more
pronounced. Natural convection is, however, more significant on an absolute scale, as it is also
realized in large systems (such as the Earth’s crust or stars).

Radiative heat transfer is accomplished directly by the release of photons. Each object with a
non-zero (absolute) temperature radiates. Radiance (the amount of energy transferred through
radiation per 1 s over one-unit area) is given by equation

Me = σT 4 , (3)

where σ = 5.67 ·10−8 W·m−2·K−4 is the Stefan–Boltzmann constant.11 The constant σ is small,
but the term T 4 grows rather quickly, so it is dominant for high-temperature radiation. Since
all objects radiate, we must subtract the energy from the radiated energy received by absorbing
radiation from the surrounding environment.

Me,ef = Me,surf − Me,out = σ
(
T 4

surf − T 4
out

)
.

9Not quite true – particles formed near the edge of the material will be emitted outward, escaping, and
transferring their energy to the surrounding air. Since a certain width can confine this layer, its significance
decreases with the thickness of the material.

10For this reason, we can say that thermal excitations propagate at the speed of sound because the mechanism
is the same.

11The derivation is beyond the scope of this problem. For the curious participants, let us reveal the formula
was obtained by integrating Planck’s radiation law over all wavelengths and across the solid angle.
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The equation above still needs correction for reflectivity – not whole radiation is absorbed –
some of it gets reflected. The absorbance α expresses a proportion of the absorbed and reflected
energy

Me,ef = Me,surf − αMe,out = σ
(
T 4

surf − αT 4
out

)
.

Calculation
To melt the material, we need the temperature in the hottest place to be higher than its melting
temperature. From the table12 we can see the melting temperature Tmelt = 1 585 K. First, let
us consider what geometry will achieve the highest temperature in a given amount of material
at the center. This is obtained by

• minimizing the area, because by reducing the area, we reduce the heat transfer, so the
object will have to heat up more to establish equilibrium,

• maximizing the distance of “the innermost point” from the edge – because the temperature
increases away from the surface.

Without proof, let us use the fact that the properties above are satisfied by a sphere. Since the
sphere is solid, the heat transfer will be mainly by conduction – so let us compute the heat
conduction equation (2) in sphere geometry. We want to solve for the stationary state (i.e., the
state that occurs after a sufficiently long time when the system is in equilibrium and does not
change over time). Therefore, the right-hand side of the equation is zero

a∇2T + PV

ρcp
= 0 . (4)

For further simplification, we can divide the whole equation by a

∇2T + PV

λ
= 0 . (5)

The Laplace operator in the sphere geometry (assuming the problem is dependent only on the
radial coordinate13) is

∇2
sph = ∂2

∂r2 + 2
r

∂

∂r
= 1

r2
∂

∂r

(
r2 ∂

∂r

)
.

By substituting (5) we get

1
r2

∂

∂r

(
r2 ∂T

∂r

)
+ PV

λ
= 0 ,

∂

∂r

(
r2 ∂T

∂r

)
= −PV

λ
r2 ,

r2 ∂T

∂r
= −PV

3λ
r3 + C1 .

As a boundary condition, let us choose that there is a maximum in the core of the sphere, i.e.,

∂T

∂r
(r = 0) = 0 = C1 .

12https://www.webelements.com/gadolinium/thermochemistry.html
13Which is not entirely true here, see discussion.
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We will continue by integrating both sides

r2 ∂T

∂r
= −PV

3λ
r3 ,

∂T

∂r
= −PV

3λ
r ,

T (r) = −PV

6λ
r2 + C2 .

Finally, we apply the boundary condition to the known temperature in the core T (r = 0) = Tin

T (r) = Tin − PV

6λ
r2 ,

for the temperature at the edge is the following true

T (R) = Tin − PV

6λ
R2 . (6)

We will determine the temperature at the edge from the condition that the entire heat output of
the sphere must be dissipated. Calculating natural convection would be complicated, so we will
start by assuming that all heat is transferred to the surrounding environment by the radiation
and that the absorption is 1, i.e., everything that hits the sphere is absorbed. Then

PV V = SM = Sσ
(
T 4

surf − T 4
out

)
. (7)

Substituting for the volume and the surface of the sphere as well as the temperature profile in
the sphere we get

Tin = PV

6λ
R2 + 4

√
PV

3σ
R + T 4

out . (8)

Explicitly expressing R so that Tin = Tmelt would be challenging, so we can help ourselves by
plotting the graph of Tin(R) and finding where Tin = Tmelt. Afterward, we will use T1/2 = 74.6 y
(from the Nuclear Data Search14) in order to obtain the decay constant Λ, then Q = 3271.21 keV
(the same source), NA = 6.022 · 10+23 mol−1 (Avogadro constant), ρ = 7900 kg·m−3 (from
Wikipedia15) and M = 0.148 kg·mol−1 (we could not find anything more precise). We will
substitute to the formula (1) and get PV . Furthermore, Tout = 293.15 K (from the problem
assignment) and λ = 10.6 W·m−1K−1 (also from Wikipedia) substituting to the formula (8)
will give us dependence, which is shown in figure 1. Using a popular numerical technique or by
brute force, we find

R = 7.01 cm ,

which implies m = 11.4 kg.
14http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=640148
15https://en.wikipedia.org/wiki/Gadolinium
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Fig. 1: Dependence of the temperature Tin at the core of the sphere on the radius, assuming
that heat is transferred to the surroundings only by radiation.

Influence of natural convection
Let us evaluate the effect of natural convection – we have neglected it in the calculations above;
however, we have not proven it in any way. In the balance equation (7) we will add a term for
natural convection qconv

PV V = S
(
σ

(
T 4

surf − T 4
out

)
+ qconv

)
. (9)

We need to determine the term qconv. For heat transfer between two media, we generally use
Newton’s law

qconv = α (Tsurf − T∞) ,

where T∞ is “temperature far enough in the surrounding medium”, since the fluid in the near
vicinity of the hot sphere will have a higher temperature. We need to find the coefficient α –
this is determined by the type and shape of the surface and type of the flow – which is affected
by the wall temperature. All in all, we have a problem with too many unknowns. In general,
α increases with the difference Tsurf − T∞, because higher wall temperature causes a greater
difference in the density of the surrounding air, resulting in a more intense natural flow. The
exact analytical calculation does not exist. We can compute the numerical solution of the Navier-
Stokes equations with heat transfer, which the most modern CFD software are capable of,16 or
use similarity theory and empirical correlations. Let us show the estimation using similarity

16CFD is from Computational Fluid Dynamics – typically based on the finite volume method. Examples of
codes used are ANSYS Fluent, Siemens StarCCM+ or OpenFOAM.
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theory (let us forgive the theorists). To calculate the α we can use the Nusselt number defined
as

Nu = αL

λ
,

where L is the characteristic dimension –in the case of a sphere, the diameter. We obtained the
Nusselt number Nu from the correlation17

Nu =
(
20,816 + 0, 15Ra0,277

D

)1/0,816
,

where RaD is the Rayleigh number, defined as

RaD = gβ

νa
(Tsurf − Tout) D3 ,

where g is the free-fall acceleration, β is the volumetric coefficient of thermal expansion, ν is
the kinematic viscosity, and D is the characteristic dimension – the diameter. After all the
substitutions, we will get

σ
(
T 4

surf − T 4
out

)
+ λ

2R
(Tsurf − Tout) ·

·
(

20,816 + 0, 15
(

gβ

νa
(Tsurf − Tout) · 8R3

)0,277
)1/0,816

− 1
3PV R = 0 , (10)

here we should also substitute from equation (6) for the conversion Tsurf for Tin, finally express
Tin in dependence on R and find out where Tin > Tmelt – or the other way around, put Tin =
= Tmelt and solve for R. The equation is already very ugly; let us put Tin = Tmelt, by using
the computer, we will calculate the left side of the equation (10) for various R and find when
it equals zero. Thus, we will get

R = 12.42 cm ,

which corresponds to a mass of 63.34 kg. Let us keep in mind that the relationships are approx-
imate, and we should always be concerned with their conditions of validity.

In summary, we have shown that the original assumption about dominant radiation was
wrong. We can calculate, out of curiosity, that the surface temperature of the sphere is 374 K,
which is not much – the difference between the surface layer of the sphere and the inside is
over 1 200 K, which is due to a combination of the volumetric heat source and poor thermal
conductivity (as an example, steels have approximately 8 – 60 W·m−1·K−1, aluminum has over
200 W·m−1·K−1; in the contrast, insulating materials such as polystyrene 0.3 W·m−1·K−1).

Finally, let us comment on the assumption from the problem assignment that no fission
occurs. We cannot say that with absolute certainty – it is just that we do not have enough
data for fission, because the isotope 148Gd is neither commonly found in nature nor commonly
used (Gd is often used as a burnup absorber in nuclear reactors, but the 155Gd and 157Gd are
mainly applied there).

The rarity of this isotope also makes the task unrealistic– it is hardly imaginable that an α
emitter could be found anywhere in such large quantities. If anything, it would be found in very
small amounts. The problem was inspired by radioisotope thermoelectric generators, where α
emitters are actually used to generate heat– e.g., the isotope 238Pu in the MMRTG18 on the
Curiosity rover.

17https://thermopedia.com/content/786/
18https://en.wikipedia.org/wiki/Multi-mission_radioisotope_thermoelectric_generator
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Addendum – nuclear data
We took data from “various” sometimes even too open sources. For the FYKOS problem assign-
ment, this is not a problem, but in academic papers, the above sources might not be considered
“sufficiently credible”. Furthermore, the more complicated calculations would require even more
data – different half-lives, the types, and energy of the decay products; in the case of neutronic
calculations, we would need effective cross-sections. For the reasons above, it is necessary to
have all the data from one source and ideally verified by someone.

That is why ENDFs (Evaluated Nuclear Data File) exist. For individual isotopes, there
are ENDF files containing different data – effective cross-sections, the decay products, and
the nuclear parameters,. . . there are entire libraries of ENDF files such as the European JEFF
library or the US ENDF/B library. The libraries are typically considered a trusted source.19

Let us use this problem to show how to search the nuclear data. One of the available tools
is JANIS.20 On the main page, select the button “Browse”, then “Radioactive data”. Choose
a library – e.g., JEFF-3.3. Then “Radioactive decay data”, “Gd”, “148Gd”. It will open up a
blank visualizer window, and at the bottom of the table, click on the list of “Decay data” and
in the row “Discrete Alpha” select T. The new tab should open in the visualizer window with
a table with a single line 3 182 800 eV. We used a little different value. We could use a similar
procedure for other data for a particular isotope and its decay and reactions.

Matěj Rzehulka
matej.rzehulka@fykos.org

FYKOS is organized by students of Faculty of Mathematics and Physics of Charles
University. It’s part of Media Communications and PR Office and is supported by Institute of
Theoretical Physics of MFF UK, his employees and The Union of Czech Mathematicians and
Physicists. The realization of this project was supported by Ministry of Education, Youth and

Sports of the Czech Republic.
This work is licensed under Creative Commons Attribution-Share Alike 3.0 Unported.
To view a copy of the license, visit https://creativecommons.org/licenses/by-sa/3.0/.

19They still vary in the amount of data and generally provide slightly different results. Academics then have
their favorites, so “suitability” of the data used for the calculation can be the subject of long debates.

20JANIS is only for viewing and visualizing nuclear data; it is not a library. It is available at https://oecd-
nea.org/janisweb/
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