
FYKOS Solution XXXVII.V.5

Problem V.5 . . . tuning a circuit 9 points; průměr 1,64; řešilo 22 studentů

L C R

ω0 2ω0 3ω0

Consider a series circuit with a resistor of resistance R,
a coil, and a capacitor with the capacitance C. AC voltage
sources with identical amplitudes U are connected in series
with these components. These sources vary in frequency
by being multiples of ω0, where n represents an integer.
What frequency, denoted by ω0, would allow us to find
a coil possessing an inductance L, such that voltages with
frequencies different from Nω0 are suppressed by at least 90 % on the resistor? N is a positive
natural number known in advance (i.e., the value of ω0 may depend on it), and we do not want
to suppress the voltage with frequency Nω0 by more than 90 %.

Jarda wanted to have as many different sources in the circuit as possible.

Let’s take a look at a simpler situation first. For the voltage across a resistor in a series RLC
circuit with an impedance zn and a voltage source of Un = U sin(nω0t) the following applies

UR = IR = U

|z|R = R√
R2 +

(
nω0L − 1

nω0c

)2
U .

If we want the voltage on this resistor to be damped by at least 90 %, then it must hold UR ≤ αU
for α = 0.1.

If we now connect more sources to the circuit as stated in the task, their superposition will
give the total voltage. However, the linear behavior of the RLC circuit implies that we can solve
for the voltages of different frequencies separately – for each one, we calculate the impedance,
and according to the relation above we derive the partial voltage across the resistor.

The condition from the specification then states that, for all n ̸= N , must hold

R√
R2 +

(
nω0L − 1

nω0c

)2
≤ α (1)

and at the same time
R√

R2 +
(
Nω0L − 1

Nω0c

)2
> α . (2)

Let n ̸= N and let us solve the inequality (1):(
R

α

)2
≤ R2 +

(
nω0L − 1

nω0C

)2
,

R

√
1

α2 − 1 ≤
∣∣∣nω0L − 1

nω0C

∣∣∣ , (3)

from where
L ∈ R+ \

(
1

n2ω2
0C

− A

nω0
,

1
n2ω2

0C
+ A

nω0

)
,

where A = R
√

1/α2 − 1 a n ̸= N ; for the sake of correctness, let us also mention that by the
set R+ we do not formally mean the set of positive real numbers, but the set of admissible values
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of coil inductances (the difference is in the unit). By analogy, we also solve the equation (2),
where we get

L ∈
(

1
N2ω2

0C
− A

Nω0
,

1
N2ω2

0C
+ A

Nω0

)
.

If for n ∈ N we denote

ln = 1
n2ω2

0C
− A

nω0
,

pn = 1
n2ω2

0C
+ A

nω0
,

and Jn = (ln, pn) interval with these extreme points, we can rewrite the condition from the
problem as

L ∈
[
R+ ∩ JN

]
\

∪
n∈N
n̸=N

Jn .

This can be interpreted to mean that in the system of intervals Jn with the edge points ln

and pn under study, we find when JN contains a positive value L that is not also contained in
any of the Jn intervals for n ̸= N .

We will now claim that we can find a satisfying L precisely when pN+1 < lN−1. To this end,
we will make several observations.

1. The sequence pn consists of positive numbers and decreases monotonically to zero.

2. The sequence ln also converges to zero, and apparently from some n0 its terms will always
be negative.

3. If ω0 is such that lN−1 ≤ 0, then necessarily (because of the monotonicity of pn) will hold

R+ ∩ (lN−1, pN−1) ⊇ R+ ∩ (lN , pN ) ,

therefore the condition of the assignment cannot be fulfilled. Therefore, we will be inter-
ested in such frequencies ω0 where lN−1 > 0.

4. Let us see when the sequence ln is monotonic. After a continuous extension of the defining
domain1, we can write

0 >
dln

dn
= 1

n2ω0

(
A − 2

nω0

)
⇐⇒ n <

2
ω0CA

,

which is specially fulfilled if ln+1 > 0. For this reason, the sequence ln is decreasing as
long as its values are positive.

5. If pN+1 < lN−1, then an interval (pN+1, lN−1) has a non-empty intersection with inter-
val JN . In this intersection we can choose L, this will then be an element of the interval JN ,
but since L > pN+1 > pN+2 > . . . , it will not be an element of intervals JN+1, JN+2 nor
the following. Likewise 0 < L < lN−1 < lN−2 < · · · < l1, is therefore not even an element
of intervals J1 to JN−1.

1so that we can derive
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6. If, on the other hand, pN+1 ≥ lN−1, we also have lN+1 < lN < lN−1 ≤ pN+1 < pN < pN−1,
and so

JN ⊆ JN−1 ∩ JN+1 ,

therefore the condition of the assignment cannot be fulfilled.

Thanks to all of the above, we know that it must hold pN+1 < lN−1, let us write
1

(N + 1)2ω2
0C

+ A

(N + 1)ω0
<

1
(N − 1)2ω2

0C
− A

(N − 1)ω0
,

ω0A
( 1

N + 1 + 1
N − 1

)
<

1
C

(
1

(N − 1)2 − 1
(N + 1)2

)
,

ω0 <
2

AC

1
N2 − 1 ,

which is a required condition.
To the extent that the above solution is rather mathematical, we will give some more physical

intuition. The RLC circuit has its resonant frequency and the more the source frequency differs
from this resonant frequency, the more damped it will be. Therefore, it is sufficient to check
only the damping of two adjacent frequencies – because if we damp them sufficiently, voltages
with frequencies even further away from the resonant frequency of the circuit will be damped
even more (this is exactly the monotonicity we mentioned several times above). The value of L
will therefore be chosen so that the resonant frequency ωr = 1/

√
LC was close Nω0. A more

physical approach, where we assume a known shape of the resonance curve, could then look
like this: The attenuation of an RLC circuit according to a given frequency is expressed by
a resonance curve that has one maximum at the resonant frequency, the width of which is
determined by the circuit parameters. The width of the curve at point 90 % attenuation can
be expressed from the equation (3). With the use of substitution A = R

√
1/α2 − 1 we get, for

extreme points, considering only positive frequencies

ω1 = −AC +
√

A2C2 + 4LC

2LC
,

ω2 = AC +
√

A2C2 + 4LC

2LC
.

The distance between them ∆ω = A/L then must be less than 2ω0, so that in an interval
with an attenuation of less than 90 % was only the frequency Nω0 and not the frequency
of other sources. From this, we conclude that we are looking for a limit to ω0, when the
adjacent frequency (N − 1)ω0 and (N + 1)ω0 are just the cutoff frequencies ω1 and ω2. Target
frequency Nω0 in this case will be exactly in the middle of the interval, i.e. the average ω1
and ω2

Nω0 = ω1 + ω2

2 =
√

A2 + C2 + 4LC

2LC
=

√
A2

4L2 + 1
LC

.

From this relation, we now express the appropriate inductance (choose a positive result)

0 = 4L2CN2ω2
0 − 4L − A2C ,

L =
1 +

√
1 + A2C2N2ω2

0

2N2ω2
0C

.
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By setting the inductance to a condition ∆ω < 2ω0 we get

2ω0 >
A

L
= 2N2ω2

0CA

1 +
√

1 + A2C2N2ω2
0

,√
1 + A2C2N2ω2

0 > N2ω0CA − 1 ,

1 + A2C2N2ω2
0 > N4ω2

0C2A2 − 2N2ω0CA + 1 ,

AC(1 − N2)ω0 > −2 ,

ω0 <
2

AC

1
N2 − 1 .

So we get the same result as in the previous procedure.
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