
FYKOS Solution XXXVII.VI.5

Problem VI.5 . . . oscillating magnets 10 points; průměr 5,55; řešilo 22 studentů
Consider two identical dipole magnets, which we fix so that they can rotate in the same plane
without friction (their axes of rotation are parallel). If we deflect the magnets slightly out of
their equilibrium position, they begin to oscillate. Find the eigenmodes of these oscillations
and calculate their frequencies. Discuss what the motion of the magnets will be like for general
initial deflection (you don’t have to explicitly calculate this case). The magnets have a magnetic
moment m, a moment of inertia about the axis of rotation J and the mutual distance between
their centers is r. Jirka stole the problem from Výfuk.
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Our task is to study the oscillation of two magnets. When displaced from the equilibrium po-
sition, the magnets experience a torque given by M = m × B, which also depends on their
displacements from the equilibrium position (as we will see later). That is an example of coupled
oscillations, which typically lead to a system of linear differential equations. These equations
can be elegantly solved using matrix notation, with the eigenmodes corresponding to the eigen-
vectors of the system matrix. Moreover, we can calculate the frequencies from the eigenvalues.
We discussed this method of solving in the Serial of the 34th year about oscillations and waves.1
However, understanding why this calculation method works requires advanced knowledge of
linear algebra, so we will choose a different approach here.

Before we start with the equations of motion, we will try to guess as many results as possible
using physical intuition. We will, of course, verify the accuracy of these guesses with precise
mathematical calculations afterward.

Let’s consider the magnets in the equilibrium position, where they lie on an axis oriented
such that the opposite poles of the magnets are next to each other. When the magnets are
slightly displaced, a torque is generated. It is this torque that is returning them to the equilib-
rium position, and causing them to oscillate in a generally complicated manner. We aim to find
the eigenmodes, i.e., such oscillations where the entire system oscillates synchronously with the
same frequency. Since the magnets are identical, we can expect that they will oscillate with the
same amplitude during such motion. We cannot say much about the phase of the oscillations
at first glance, so we will initially look at special cases where the phase is either the same or
opposite. In these cases, their absolute displacement (i.e., the absolute value of the displace-
ment) is the same. Thus, the torques exerted by the magnets on each other are of the same
magnitude, and the accelerations are the same as well. The situation is perfectly symmetrical,
and the motion of the magnets must be identical. Thus, we have found two eigenmodes!

Are these all the modes, or are there any other ones? Each magnet can only rotate in one
plane, so we have one degree of freedom per magnet. It can be shown (again, this is a simple
result from linear algebra) that the number of modes is equal to the number of degrees of
freedom, so our magnets indeed have only two modes – those, we have found earlier. These are
illustrated in figures 1 and 2.

1https://fykos.org/year34/serial/start
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Fig. 1: The first eigenmode – the magnets oscillate synchronously such that the displacements
from the equilibrium positions of the magnets are the same throughout the motion.
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Fig. 2: The second eigenmode – the magnets oscillate synchronously such that the
displacements from the equilibrium positions of the magnets are opposite throughout the

motion.

With the help of simple physics notions, we have thus found candidates for the eigenmodes.
Now, let’s verify them with precise mathematical calculations. This verification process will not
only confirm our candidates but will also determine the corresponding eigenfrequencies.

From the problem statement, we know that the magnets are dipoles. For instance, on
Wikipedia2, we find that the magnetic flux density caused by a magnetic dipole placed at r = 0
at a point with position r is given by

B(r) = µ0

4π

(
3(m · r)

r5 r − m

r3

)
,

where r = |r| is the distance of the point from the magnet. In our problem, the magnets are at
a constant distance r, with only their orientation changing. Let θ1, θ2 be the displacements of
the magnets from the equilibrium position, as shown in Figures 1 and 2, and let the x-axis be
the line on which the centers of the magnets lie. In these coordinates, the magnetic moments
of the magnets have components m1,2 = m (cos θ1,2, sin θ1,2). Also, the position vector of the
second magnet relative to the first one is r1 = (r, 0), and in the opposite case, we have r2 =
= (−r, 0). If we displace the first magnet from the equilibrium position by an angle θ1, the
second magnet “feels” the magnetic flux density

Bx1 = µ0

4π

(
3mr2 cos θ1

r5 − m cos θ1

r3

)
= µ0m

2πr3 cos θ1 ,

By1 = µ0

4π

(3mr cos θ1

r5 · 0 − m sin θ1

r3

)
= −µ0m

4πr3 sin θ1 .

2https://en.wikipedia.org/wiki/Magnetic_dipole
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Similarly, if the second magnet is displaced by θ2, the flux density at the location of the first
magnet is

Bx2 = µ0m

2πr3 cos θ2 ,

By2 = −µ0m

4πr3 sin θ2 .

A magnet in an external magnetic field experiences a torque given by M = m × B. In our
problem, the torque acting on the second magnet is

M2 = m2 × (Bx1 + By1), ,

from which

M2 = −mBx1 sin θ2 + mBy1 cos θ2 = −µ0m

4πr3 (2 · cos θ1 sin θ2 + sin θ1 cos θ2) ,

and for the torque acting on the first magnet, we get

M1 = −µ0m

4πr3 (2 · cos θ2 sin θ1 + sin θ2 cos θ1) .

When a body with a moment of inertia J experiences a torque M , the angular acceler-
ation is given by M = Jθ̈. From this, we derive the equations of motion for both magnets
while considering only small oscillations. Therefore, we use the approximate relations sin x ≈ x
and cos x ≈ 1. We obtain the system of linear differential equations

θ̈1 = − µ0m

4πr3J
· (2θ1 + θ2) ,

θ̈2 = − µ0m

4πr3J
· (θ1 + 2θ2) .

We now want to solve this system. There are many ways, such as using the previously
mentioned matrix notation or deriving one of the equations twice and using the substitution
method, leading to a single fourth-order equation, etc. We will use a trick that, as we will see
later, closely relates to the physical intuition we gained at the beginning. Notice that if we add
the equations

θ̈1 + θ̈2 = − µ0m

4πr3J
· (3θ1 + 3θ2) ,

and switch to the new variable ξ = θ1 + θ2, using the properties of derivatives, we get

ξ̈ = − 3µ0m

4πr3J
ξ ,

which is the usual equation for a harmonic oscillator. Luckily, we know that the result of this
equation gives us harmonic oscillations with frequency

ω1 =
√

3µ0m

4πr3J
=

√
3ω0 .

Similarly, if we subtract the original equations and switch to the variable η = θ1 − θ2, we get

η̈ = − µ0m

4πr3J
η ,
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which corresponds to oscillations with frequency

ω2 =
√

µ0m

4πr3J
= ω0 .

So, we have that ξ = θ1 + θ2 oscillates with frequency
√

3ω0, and η = θ1 − θ2 oscillates with ω0.
But how can we imagine this?

One way is to derive it directly from the equations. The general solution for the harmonic
oscillator equation is given by the sum of sin and cos functions oscillating with the corresponding
frequency

ξ = θ1 + θ2 = A1 sin ω1t + A2 cos ω1t ,

η = θ1 − θ2 = B1 sin ω2t + B2 cos ω2t ,

where the constants A1, A2, B1, B2 are determined by the initial conditions. By adding and
subtracting these equations, we obtain separate solutions for the angles θ1 and θ2.

θ1 = (A1 sin ω1t + A2 cos ω1t + B1 sin ω2t + B2 cos ω2t) /2
θ2 = (A1 sin ω1t + A2 cos ω1t − B1 sin ω2t − B2 cos ω2t) /2

Let’s pause on writing mathematical formulas for now and examine the results. We observe
that the motion of the magnets is described by the sum of oscillatory motions with frequen-
cies ω1 and ω2. That raises an interesting question: could the magnets oscillate solely with the
frequency ω1, for example? From the equations, we see that mathematically this corresponds
to the situation where B1 = B2 = 0. But can this situation occur at all?

There are several ways to argue this. One is that the initial conditions correspond to four
independent constraints on the constants A1, A2, B1, and B2 (indeed, there are four of them:
the initial displacements of both magnets and their initial velocities). These conditions give us
a system of four linear equations. We can easily verify if B1 = B2 = 0 can occur when we
substitute this condition into the equations and verify that the equation remains solvable. If we
substitute B1 = B2 = 0 into the equation for η = θ1 − θ2, we see that the equation is satisfied
when θ1 = θ2 throughout the motion. However, this can be ensured if we set θ1(t = 0) = θ2(t =
= 0) ̸= 0 and θ̇1(t = 0) = θ̇2(t = 0) = 0.

Similarly, we find that the motion will contain only the frequency ω2 if we set θ1(t = 0) =
= −θ2(t = 0) ̸= 0 and zero initial angular velocities. Thus, we found out that the magnets
oscillate synchronously with the frequency ω2 = ω0 if θ1 = −θ2, and conversely, the motion
with frequency ω1 =

√
3ω0 occurs when θ1 = θ2. Note that this exactly corresponds to the

eigenmodes we found earlier!
We see that physical considerations can often simplify the solution of complex equations.

Instead of solving the equations with lengthy mathematical procedures, we can guess the solu-
tion using physical intuition and then verify whether our guess was correct. You can try that
for yourself when you substitute θ1 = θ2 and θ1 = −θ2 into our differential equations. The
solutions to the equations are indeed harmonic oscillations with the corresponding frequencies.
In this procedure, we must remember to check if we have found all the independent modes. We
have already argued that our problem has two degrees of freedom, and the equations we derived
confirm (in our special case) that two degrees of freedom indeed correspond to only two modes.

What will the general solution look like? From the explicit equations for θ1 and θ2, we see
that they contain both frequencies. Thus, the general motion will be composed of both modes.
How much of each mode is represented depends only on the initial conditions.
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The general solution being the sum of modes is a common result due to the linearity of
our differential equations. In other words, if any two functions f(x) and g(x) solve a linear
differential equation, then the function h(x) = af(x)+bg(x), where a, b are arbitrary constants,
also solves it (we leave the proof of this statement to the reader as a simple exercise).
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