astrophysics (79)biophysics (18)chemistry (20)electric field (68)electric current (70)gravitational field (78)hydromechanics (137)nuclear physics (40)oscillations (53)quantum physics (28)magnetic field (39)mathematics (85)mechanics of a point mass (276)gas mechanics (80)mechanics of rigid bodies (209)molecular physics (68)geometrical optics (73)wave optics (60)other (157)relativistic physics (36)statistical physics (20)thermodynamics (141)wave mechanics (48)


(4 points)3. Series 27. Year - 4. I have already forgotten more than you ever knew

A hot air balloon with its basket weighs $M$. The basket of the baloon is submerged into a water reservoir and water flows into it. Now we shall raise the temperature a bit and by that we raise the buoyant force acting on the balloon $Mg+F$. The basket has the shape of a rectangular cuboid with a square base which has a side of size $a$ and is submerged into a depth $H$. The openings in the basket make up $p≪1$ of the whole area of the basket about which we assume that it is empty (with the exception of water). Let us neglect the viscosity of water and the volume of the basket itself. How quickly shall it rise depending on the depth of submersion?

Bonus: When shall it emerge?

Tip The expected speed of water flowing from the basket above the water surface is 2/3 of the maximum speed of water flowing out.

Was thought up by Lukáš during watching the movie Vratné lahve.

(8 points)3. Series 27. Year - E. viscous

Each liquid has its specific viscosity. Try to make an Ostwald viscometer (capillary viscometer) and measure the relative viscosity of a few (at least three) liquids compared to water. Compare your results with what you find online.

Kiki got frustrated by the fact that everything flows differently during weighing things in a apothecary.

(5 points)2. Series 27. Year - 5. Plastic cup on water

A truncated cone that is the upside down (the hole is open downwards) may be held in the air by a stream of water which originates from the ground with a constant mass flowrate and an intial velocity $v_{0}$. At what height above the surface of the Earth will the cone levitate ?

Bonus: Explore the stability of the cone.

Radomír pil až do dna.

(4 points)1. Series 27. Year - 3. bubble in a pipeline

A horizontal pipeline with a flowing liquid contains a small bubble of gas. How do the dimensions of this bubble change when it reaches a narrower point of the pipeline? Can you find some applications of this phenomena? What problems could it cause? Assume that the flow is laminar.

Karel was thinking about air fresheners.

(4 points)1. Series 27. Year - 4. cube in a pool


Large ice cube placed at the bottom of an empty pool starts to dissolve. Assume that the process is isotropic in the sense that the cube is geometrically similar at all times. What fraction of the cube needs to dissolve before it starts to float in the water? The surface area of the pool floor is $S$, and the length of an edge of the cube before it started disolving was $a$.

Lukáš was staring at a frozen town.

(4 points)6. Series 26. Year - 4. filling a tank

Imagine a large tank containg tea with a little opening at its bottom so that one can pour it into a glass. When open, the speed of the flow of tea from the tank is $v_{0}$. How will this speed change if, while pouring a glass of tea, someone is filling the tank by pouring water into it from its top? Assume that the diameter of the tank is $D$, the diameter of the flow of tea into the tank is $d$, and that of the flow of tea out of the tank is much smaller than $D$. The tea level is height $H$ above the lower opening, and the tank is being filled by pouring a water into it from height $h$ above the tea level. You are free to neglect all friction.

Lukas had an accident

(2 points)5. Series 26. Year - 1. boiling oceans

Estimate how much energy would be needed to evaporate all oceans (on Earth).

Karel says it's too cold for swimming.

(8 points)5. Series 26. Year - E. evaporate!

Design an experiment to measure the dependence of the speed of evaporation on the surface area of the evaporating liquid. You should use at least five different containers to do the measurment. What other factors can influence the speed of evaporation? Note that this experiment should run for several days so plan accordingly.

Kiki was too lazy to go get the rag.

(4 points)5. Series 26. Year - P. Prague is flooded!

In 2002 Prague experienced serious floodings. Try to estimate the amount of water that can fit into the Prague subway system. All the important parameters of the subway system like the train sizes, number of stations, length of the tunnels etc. can be found online.

Karel was drowning.

(5 points)2. Series 26. Year - 5. the U tube


Imagine a U-tube filled with mercury, and a bubble of height $h_{0}$ that floats inside (see the attached picture). Describe what would happen if we changed the surrounding atmosphere in the following ways. Assume that the density of mercury is independent of temperature. The same is valid for the glass the tube is made of. Also assume that the surrounding air behaves as an ideal gas. The initial state of the atmosphere is described by temperature $T_{0}=300K$, and pressure $p_{a}=10\cdot 10^{5}Pa$. Furthermore, assume that the system is in a thermodynamic equilibrium at all times, and that the bubble has a cylindrical shape.

  • Both ends of the tube are open, and the temperature doubles.
  • Both ends of the tube are closed, and the temperature doubles.
  • Only one of the ends of the tube is closed, and the temperature doubles. For each of these cases, determine the new size of the bubble, and the height difference between the mercury columns in the two branches.

Bonus: Repeat the calculation assuming that the volume of mercury grows linearly with temperature.

This website uses cookies for visitor traffic analysis. By using the website, you agree with storing the cookies on your computer.More information



Host MSMT_logotyp_text_cz

General partner


Media partner

Created with <love/> by ©FYKOS –