Search

astrophysics (79)biophysics (18)chemistry (19)electric field (65)electric current (70)gravitational field (74)hydromechanics (133)nuclear physics (37)oscillations (50)quantum physics (25)magnetic field (37)mathematics (84)mechanics of a point mass (263)gas mechanics (79)mechanics of rigid bodies (200)molecular physics (62)geometrical optics (72)wave optics (53)other (150)relativistic physics (35)statistical physics (20)thermodynamics (133)wave mechanics (47)

other

6. Series 35. Year - E. minute

Create a device that can measure one minute as accurately as possible. You are not allowed to use any time measuring devices for calibration when designing your own. After you finalize your device, use a stopwatch to determine „your minute“ accuracy.

Bonus: Measure ten minutes.

Matěj allways arrives at the train station at most one minute before the train's departure, even if it's got a half hour delay.

6. Series 35. Year - P. torrential rain

Is it convenient to hide from the rain in the woods? Create a suitable model describing this issue. Consider, for example, foliage density, and the intensity and duration of the rain. Describe how long after the rain starts, the drops from the leaves start to fall to the ground, as well as how long after the rain ends, it stops raining in the woods, and so on.

4. Series 35. Year - 1. planet dependent units

Units of many physical quantities on Earth are historically tied to the properties of our planet. What would be the units such as meter, knot or atmosphere, if we defined them using the same methodology as on Earth, but while living on Mars? Derive both the ratios between „terran“ and „martian“ units and their values in SI units.

Karel was pondering about non-SI units.

4. Series 35. Year - P. winter wonderland

Think about the possibilities for simplification of movement of a human through a landscape during winter. Consider different terrain inclinations, types of snow („powder“, wet snow, melted and resolidified snow, ice, \dots ), and equipment (snowshoes, skis, crampons, ice skates, \dots ). Describe the physical principle behind each type of equipment, and based on this principle, determine which type is best suited for which environment.

Dodo wishes for a proper winter at last.

3. Series 35. Year - 5. blacksmith's

Gnomes decided to forge another magic sword. They make it from a thin metal rod with radius $R=1 \mathrm{cm}$, one end of which they maintain at the temperature $T_1 = 400 \mathrm{\C }$. The rod is surrounded by a huge amount of air with the temperature $T_0 = 20 \mathrm{\C }$. The heat transfer coefficient of that mythical metal is $\alpha = 12 \mathrm{W\cdot m^{-2}\cdot K^{-1}}$ and the thermal conductivity coefficient is $\lambda = 50 \mathrm{W\cdot m^{-1}\cdot K^{-1}}$. The metal rod is very long. Where closest to the heated end can gnomes grab the rod with their bare hands if the temperature on the spot they touch is not to exceed $T_2 = 40 \mathrm{\C }$? Neglect the flow of air and heat radiation.

Matěj Rzehulka burnt his fingers on metal.

1. Series 35. Year - 2. two-second rule

The two-second rule is a driving principle which states that a safe time distance between two vehicles is at least two seconds long. Suppose a traffic junction where a $n_1$-lane road changes into a $n_2$-lane one. The maximum allowed speed in the first section is $v_1$. What is the lowest possible maximum speed $v_2$ that can be allowed in the second section so that there is no traffic jam and everyone can follow the two-second rule? The average length of a car is $l$ and it can change its speed in leaps.

Honza was stuck in the traffic jam for too long.

1. Series 35. Year - P. so hot

You may have noticed that not all volcanos on Earth have the same „universal“ shape – they differ from each other. For example, compare the photos of the Hawaiian volcano Mauna Loa and the Italian Vesuvio. They differ not only in the steepness of their walls but also in the style of eruptions. Both of these properties are related to the viscosity of magma. Discuss the effect of the viscosity of magma on the style and dangerousness of eruptions. Is is related to the geographic location of the volcanoes?

Jindra slowly turns lunatic from studying Earth \uv {sciences}.

6. Series 34. Year - E. spilled glass

Take a glass, can or any other cylindrically symmetrical container. Measure the relationship between the angle of inclination of the container when it tips over and the amount of water inside of it. We recommend to use a container with greater ratio of its height to the diameter of its base.

Jindra was watering the table.

2. Series 34. Year - P. costly ice hockey

Estimate how much the complete glaciation of an ice hockey rink costs.

Danka doesn't like ice hockey, but she likes figure skating.

6. Series 33. Year - S.

We are sorry. This type of task is not translated to English.

This website uses cookies for visitor traffic analysis. By using the website, you agree with storing the cookies on your computer.More information

Partners

Host

Host MSMT_logotyp_text_cz

Media partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz