astrophysics (84)biophysics (18)chemistry (22)electric field (70)electric current (75)gravitational field (79)hydromechanics (144)nuclear physics (43)oscillations (55)quantum physics (31)magnetic field (42)mathematics (89)mechanics of a point mass (292)gas mechanics (87)mechanics of rigid bodies (220)molecular physics (71)geometrical optics (77)wave optics (65)other (164)relativistic physics (37)statistical physics (21)thermodynamics (150)wave mechanics (51)


(10 points)2. Series 30. Year - S. guessing problem

  1. Describe in your own words the purpose of interval estimation of mean of a normal distribution and explain its physical interpretation (it is sufficient to describe, in your own words, the following concepts: physical interpretation of the estimation of expected value, difference between point and interval estimation, measurement uncertainty). It’s not necessary to state the exact mathematical derivations. It’s sufficient to briefly explain the concepts and their properties.
  2. Attached to this task, in the file mereni1.csv there are measured values of a certain physical quantity (assume type B uncertainty of B $s\_B = 0{,}1$). Create both the point and interval estimations of the measured physical quantity and try to interpret their meaning.
  3. Suppose we measure a certain physical quantity and we know that due to the method being used, the measured values will have a variance equal to a constant $c$ (ignore the type B uncertainty). How many measurements do we need to make to achieve an uncertainty below $s$?
  4. In the attached file mereni2.csv there are data of measurements one physical quantity two different ways (neglect type B uncertainty). Which method used more precise measurement equipment? Which method produced a more precise results Briefly give reasons for your answers.

Bonus: Try to rigorously derive that in a normal distribution the sample variance is an unbiased estimate of the real variance (i.e. the mean of sample variance is equal to the real variance). For the solution of this problem you may use any and all sources (if you cite them correctly).

For data processing and creating the plots, you may use the R programming language. Most of these tasks can be solved by slightly altering the attached scripts.

Michal guessed the optimal wording of the problem, let's hope he was right.

(5 points)1. Series 30. Year - 3. Bouncy bounce

Let's have an ideal bouncy ball (with coefficient of restitution equal to one and negligible dimensions). We throw this bouncy ball down an infinitely long staircase, where a step has height $h$ and length $l$. The bounces happen without any influence from friction. Describe the relation between the maximum height reached (measured from the first step) after $n-th$ bounce and the initial parameters.

Lubošek potkal v městské dopravě Mikuláše.

(7 points)1. Series 30. Year - 5. On a walk

Katka decided to go for a walk with her pet rat. They arrived on a flat meadow and when the rat was at a distance $x_{1}=50\;\mathrm{m}$ from Katka, she threw him a ball with the speed $v_{0}=25\;\mathrm{m}\cdot \mathrm{s}^{-1}$ and an angle of elevation $α_{0}$. In that moment, he started running towards her with the speed $v_{1}=5\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Find a general formula for an angle $φ$ as a function of time, where the angle $φ(t)$ is the angle between the horizontal plane and the line between the rat and the ball. Draw this function into a graph and, based on the graph, determine, whether it's possible for the ball to obscure the Sun for the rat, when the Sun is situated $φ_{0}=50°$ above the horizon in the direction of the running rat. Use the acceleration due to gravity $g=9.81\;\mathrm{m}\cdot \mathrm{s}^{-2}$ and for simplicity imagine we are throwing the ball from a zero height.

Mirek pozoroval, co se děje v trávě.

(12 points)1. Series 30. Year - E. Pechschnitte

Does bread always falls on the side that has the spread on it? Explore this Murphy's law experimentally with emphasis on statistics! Does it depend on the dimensions of the slice, or the composition and the thickness of the spread? Try to explain the experimental results with a theory. Use a sandwich bread.

Terka má stůl ve špatné výšce.

(10 points)1. Series 30. Year - S. random one

  1. Try to explain in your own words what is a random variable and what are its properties (explanations of following concepts are required: random variable, distribution of a random variable, realization of a random variable, mean, variance, histogram).
  2. Generate graphs of probability distribution functions for the following distributions of random variable: normal, exponential, uniform (continuous) and Poisson. Describe what happens when you alter the parameters of aforementioned distributions.
  3. From the data set attached to this task, generate histograms and try to determine the associated distributions.
  4. Suppose we define a random variable $X$ as a result of a „fair“ (all outcomes are equally probable) six-sided dice roll. Determine the distribution function of the random variable $X$ and calculate $\mathrm {E} X$ and $\mathrm {var} X$.

Bonus: Name two different distributions of random variables with the same mean and variance.
For data processing and creating the plots, you may use the R programming language. Most of these tasks can be solved by slightly altering the attached scripts.

Michal created a random problem, hopefully it won't be too hard.

(2 points)6. Series 29. Year - 1. It's about what's inside of us

In the year 2015, a Nobel prize for Physics was given for an experimental confirmation of the oscillation of neutrinos. You have probably already heard about neutrinos and maybe you know that they interact with matter very weakly so they can pass without any deceleration through Earth and similar large objects. Try to find out, using available literature and Internet sources, how many neutrinos are at any instant moment in an average person. Don't forget to reference the sources.

(4 points)6. Series 29. Year - 3. Going downhill

We are going up and down the same hill with the slope $α$, driving at the same speed $v$ and having the same gear (and therefore the same RPM of the engine), in a car with mass $M$. What is the difference between the power of the engine up the hill (propulsive power) and down the hill (breaking power)?

(8 points)6. Series 29. Year - E. Malicious coefficient of restitution

If we drop a bouncing ball or any other elastic ball on an appropriate surface, it starts to bounce. During every hit on the surface some kinetic energy of the ball is dissipated (into heat, sound, etc.) and the ball doesn't return to its initial height. We define the coefficient of restitution as the ratio of the kinetic energy after and before the hit. Is there any dependence between the coefficient of restitution and the height which the ball fell from? Choose one suitable ball and one suitable surface (or several if you want) for which you determine the relation between the coefficient of restitution and the height of the fall. Describe the experiment properly and perform a sufficient number of measurements.

(6 points)6. Series 29. Year - P. iApple

Think up and describe a device that can deduce its orientation relative to gravitational acceleration and convert this information to an electrical signal. Come up with as many designs as you can. (An accelerometer-like device that is in most smart phones.)

(7 points)5. Series 29. Year - E. photographic

With the aid of a digital camera measure the frequency of the AC voltage in the electrical grid. A smart phone with an app supporting manual shutter speed should be a sufficient tool.

This website uses cookies for visitor traffic analysis. By using the website, you agree with storing the cookies on your computer.More information

Organizers and partners


Organizer MSMT_logotyp_text_cz

General Partner



Media partner

Created with <love/> by ©FYKOS –